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Extracting complex interactions (i.e., dynamic topologies) has been
an essential, but difficult, step toward understanding large, com-
plex, and diverse systems including biological, financial, and electrical
networks. However, reliable and efficient methods for the recov-
ery or estimation of network topology remain a challenge due to
the tremendous scale of emerging systems (e.g., brain and social
networks) and the inherent nonlinearity within and between indi-
vidual units. We develop a unified, data-driven approach to efficiently
infer connections of networks (ICON). We apply ICON to deter-
mine topology of networks of oscillators with different periodicities,
degree nodes, coupling functions, and time scales, arising in silico,
and in electrochemistry, neuronal networks, and groups of mice. This
method enables the formulation of these large-scale, nonlinear esti-
mation problems as a linear inverse problem that can be solved using
parallel computing. Working with data from networks, ICON is robust
and versatile enough to reliably reveal full and partial resonance
among fast chemical oscillators, coherent circadian rhythms among
hundreds of cells, and functional connectivity mediating social syn-
chronization of circadian rhythmicity among mice over weeks.

network inference | complex networks | dynamic topology |
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Complex systems in which multiple agents affect each other
dynamically are prevalent in nature and human society in

different scales (1–3). Undesirable behavior of such systems, in
the form of disease, epidemics, economic collapse, and social
unrest, has generated considerable interest in understanding the
dynamic structures of and devising ways to control complex dy-
namic networks. Thanks to the advances in data science and
digital technology, data are abundant and easy to access; how-
ever, models often remain elusive. Extracting dynamic interac-
tions of a large complex network from noisy data is becoming a
central challenge in diverse areas of science and engineering (4–6).
For instance, the topology of networks of biological oscillators
could indicate their ability to achieve stable synchrony, and ab-
normality in brain networks may predict the imminence or oc-
currence of disease, such as seizures.
Data-driven research on dynamical systems has been extensively

conducted in recent years. Various studies based on Bayesian
statistics, information theory, and spectral analysis have been
proposed to extract the dynamics of systems using their measured
data (7, 8). The developed methods were mostly aimed toward
discovering governing equations of a single nonlinear dynamical
system (9) or reconstructing biological networks, such as gene
regulatory networks or oscillator networks, from data. In these
studies, the reconstructions were realized in the cases for which
the topology of networks is known and the connection strength
is estimated (10) or the topology is simply logic-based, i.e., the
interactions between nodes are binary values (11, 12), and the

developed techniques are robust when the network is sparse
and small (8, 13).
In this report, we establish a unified framework for robust de-

termination of dynamic topology of complex networks constituted
by a population of nonlinear dynamical units. In particular, we
develop a reliable and efficient, data-driven approach for inferring
connections of networks (ICON), which requires no assumptions
on the network topology and structure, e.g., sparsity, and prior
statistics of the interactions. We apply the ICON technique to
reveal topology and analyze dynamic structures (e.g., the nodes
and functions that mediate synchrony) of complex networks with
different spatial and temporal scales—from in silico circuits to
cells to societies. Specifically, we reveal features of the functional
connectivity of interacting chemical oscillators, circadian cells, and
cohoused mice.

Theory and Algorithms
With ICON, we study any broadly defined complex network that
consists of a population of N units (agents), x1, . . . , xN, following
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the dynamical law governed by the agent’s self-dynamics and the
influence from other agents,

_xiðtÞ= f ðxiÞ+
X
j≠i

Kij
�
xi, xj

�
, i= 1, ...,N, [1]

where the vector xiðtÞ∈Rn denotes the state of agent i at time t,
the function f represents the baseline dynamics, e.g., frequency,
of each agent, and Kij, where i, j= 1, . . . ,N, is the coupling func-
tion between agent i and j (Kij can be different from Kji). The
dynamics, i.e., f and Kij, and thus the topology of such a directed
network are problematic to infer from data, because the inherent
nonlinearity within and between individual agents as well as the
large-scale nature of these systems deteriorate the computational
efficiency and accuracy for estimation (10); moreover, state ob-
servations may be incomplete or only partially available in prac-
tice and contaminated by intrinsic and external noise (14).
The central idea of our approach is to approximate the agent’s

self-dynamics and coupling dynamics, f and Kij, respectively, by
using complete orthogonal bases, e.g., the Legendre or Chebyshev
polynomials, or the Fourier basis. Specifically, we represent each
of these functions as a truncated series, i.e., f ðxiÞ≈

P
k
akQkðxiÞ and

Kijðxi, xjÞ≈
P
k

P
ℓ
bkℓij PkðxiÞPℓðxjÞ, where fQkg∞k=1 and fPkg∞k=1 con-

stitute orthonormal bases of the respective function space con-
taining f and Kij. Then, the dynamical law in ref. 1 can be expressed
as (for n= 1)

_xiðtÞ=
X
k

akQkðxiÞ+
X
j≠i

X
k

X
ℓ

bkℓij PkðxiÞPℓ
�
xj
�
, [2]

where ak and bkℓij are the scalar coefficients, and the coupling
strength αij is defined by αij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

P
ℓ
ðbkℓij Þ

2
r

. Following this strategy

based on the orthonormal basis representation, given the mea-
surement data (time series) of each agent i in the network, the
topology estimation can be formulated as a simple linear inverse
problem for each agent i, given by

min
zðiÞ

��yðiÞ −AðiÞzðiÞ
��
2, [3]

where yðiÞ is the data vector; AðiÞ ∈RM×ðr2N+mÞ is a matrix com-
posed of the orthonormal bases, in which M is the number of
data points in the time series for agent i and r and m are the
numbers of expansion terms in the truncated series fPkg and
fQkg, respectively; and zðiÞ is the coefficient vector that is being
determined (see SI Appendix, sections 1 and 2 for detailed for-
mulation and examples for the case of n> 1).
Most importantly, this formulation enables independent esti-

mation of the coupling dynamics for each individual agent in the
network, so that estimating topology of very large networks
becomes possible via a parallel computation architecture. Note
that there exists a variety of techniques for solving the large-scale
least squares (linear inverse) problem as in Eq. 3 (15), for ex-
ample, the truncated singular value decomposition (TSVD) for
regularization of ill-conditioned matrix AðiÞ (15, 16), compressive
sensing for very large-scale networks with sparse topology (17),
and iterative methods, such as the iterative recursive thresh-
olding and iterative shrinkage-thresholding algorithms for large-
scale inverse problems with dense matrix data (18, 19). One may
employ a specific method depending on the size and structure of
the network. The optimized coefficient vectors zðiÞ for i= 1,⋯,N
define the time-varying functions f and Kij in Eq. 1, and thus
identify the dynamic network topology from data.

Results
Complex systems constituted by a network of rhythmic compo-
nents appear in many engineered and living systems at different
scales, such as circadian neurons, chemical oscillators, power
grids, and animal societies (20–24), in which the network emerging
properties are functionally significant, such as sleep−wake cycles
and jet lag, battery pack charge−discharge cycles, and short-term
memory and communication through social behaviors (25). Re-
vealing topology and connectivity is essential to characterize the
dynamical structures and functions of such networks, which, in
turn, leads to the fundamental understanding of many real-world
complex systems, such as functional connections in the brain,
synergy of circadian clocks, and social synchronization in groups of
animals. We apply the ICON technique to determine topology of
networks of oscillators with different periodicities, degree nodes,
coupling functions, and time scales, arising in silico, and in elec-
trochemistry, neuronal networks, and groups of mice. The excel-
lent agreement of the estimation with the experiments over such
an extremely diverse set of systems validates our strategy and
suggests that our data-driven methodology provides a general
framework that can be applied to numerous additional systems of
interacting dynamic units.

Synthetic Networks. We first tested the accuracy of ICON to es-
timate the topology of a synthetic network with oscillatory system
dynamics. The techniques of phase model reduction have been
widely used to describe the dynamics of coupled nonlinear os-
cillatory systems (22, 26–28), e.g., circadian clock networks.
Here, we consider topology estimation of a network of slightly
heterogeneous, weakly coupled, generalized Kuramoto-type
nonlinear oscillators (26), whose dynamics are described by
_ϕiðtÞ=ωi +

P
j≠i
Kijðϕi −ϕjÞ, where ϕi ∈ ½0,2πÞ and ωi > 0 denote the

phase and the natural oscillation frequency of oscillator i, re-
spectively, and the coupling function Kij, i, j= 1, . . . ,N, is
2π-periodic. Fig. 1 shows the estimation of a representative
network consisting of 600 oscillatory units in the presence of
white noise. This synthetic network (Fig. 1A) was created using
the above Kuramoto model, with ωi randomly sampled over
ð0, πÞ and the coupling functions Kij, i, j= 1, . . . , 600, randomly
synthesized, and following the procedure presented in SI Ap-
pendix, section 2. The reconstructed network (represented using
αij over the sampling time interval) is shown in Fig. 1 A and B.
The estimation, using the TSVD with AðiÞ ∈R12,000×6,001, showed
excellent agreement with the true network (Fig. 1 A and B) with
precise recovery in the natural oscillation frequency (Fig. 1C)
and the coupling strength (Fig. 1D), where Kij was approximated
using a Fourier series of 10 terms. The computational time for
estimating the entire network simultaneously was 381.3 min (65.3 s
for estimating an agent) on a standard desktop computer (time
was averaged over estimating 10 such randomly synthesized net-
works of 600 nodes).

Electrochemical Oscillators. We chose a network of oscillatory chem-
ical reactions to validate the ICON method in an experimental
system where a complex coupling topology can be experimentally
designed with a relatively large number of nodes. In this experi-
ment, 15 corroding nickel wires immersed in sulfuric acid repre-
sent the nodes of the network; the reactions are coupled by
resistors to produce the network structure (Fig. 2A) (29). Because
of inherent heterogeneities in the uncoupled network, the oscil-
latory reactions have slightly different frequencies on each node.
When electrical coupling occurs through the resistors with suffi-
ciently strong coupling, the network can exhibit synchronized os-
cillations. We applied a synchronization engineering technique
with a global linear feedback (22) to desynchronize the oscillations,
and recorded the relaxation of the system to the synchronized
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behavior (about 33 cycles of data collection, 37,600 sample points)
and applied the ICON technique to reconstruct the dynamics of
the system.
The estimated natural frequencies (Fig. 2C) precisely matched

(with 0.05% relative SD) the values measured in independent
experiments. Fig. 2A shows that the ICON technique identified all
of the 14 existing network connections properly out of the 105
possible links. The technique also found two connections between
nodes that were not coupled (6–7 and 10–11). Because these two
predicted links were weak and between nodes that were coupled
indirectly through another node, the impact of such mismatches
on the overall network behavior was small. We validated the re-
liability of the frequency and topology estimation by looking at the
synchronization pattern at a 44% weakened coupling strength. At
this coupling strength, the network splits into three frequency
clusters with two, three, and six elements, respectively; the rest of
the nodes were phase-drifting (Fig. 2B). As shown in Fig. 2D, the
phase model extracted from the ICON technique (adjusted for the
weakened coupling strength) properly predicted all of the pairwise
synchronization indices σij between the elements, and thus prop-
erly predicts the synchronization pattern of the system. Such high-
fidelity prediction of the spatiotemporal pattern was not pre-
viously possible, e.g., with methods based on kinetic models (29),
because of the inability to extract theoretical and experimental

information on the origin of heterogeneities and the timing of the
interactions between the regulated chemical reactions.

Circadian Neurons. The suprachiasmatic nucleus (SCN) of the
mammalian hypothalamus has been referred to as the master
circadian pacemaker that drives daily rhythms in behavior and
physiology (4). When isolated from their network, SCN neurons
can express sustained or damped circadian oscillations, or even
arrhythmic patterns. The SCN network can be pharmacologically
perturbed while monitoring the component cells for desynchro-
nization and resynchronization of their circadian gene expression
(4, 30–32). We tested the ability of ICON to estimate the con-
nections and coupling functions that underlie circadian resynch-
ronization by analyzing PERIOD2 (PER2) protein levels during
and after SCN explants were treated with the voltage-gated Na+

channel blocker, tetrodotoxin (TTX). Using recordings of PER2-
driven bioluminescence (2,850 sample points) from 541 SCN cells
(Fig. 3A), ICON recovered a time-dependent network. We found
that the influence of individual cells on the network resynchroni-
zation (i.e., the sum of the coupling strengths of all of its outgoing
connections) varied ∼10-fold, depending on the cell and its loca-
tion within the SCN (Fig. 3 B–D). The 14 and 16 hub cells (the cells
with strong outgoing connections) identified in the left and right
SCN, respectively, could indicate the presence of supercells with
greater impact on circadian synchrony in the SCN. The coupling

Fig. 2. ICON-derived estimation of interactions between chemical oscillators. (A) Experimentally designed (black connections) and estimated (colored
connections) oscillator networks. (B) Experimentally observed (colored nodes) and predicted (colored shades) synchronization subgroups of the respective
networks in A with reduced coupling strength. (C) Experimentally measured and estimated oscillation frequencies of the oscillators. (D) Pairwise synchro-
nization parameters of experimental designed and estimated networks.

Fig. 1. Demonstration of inferring the connections, and their strengths, of a synthetic network. (A) The graph representation of a synthetic noisy random
network of 600 oscillators created using Eq. 2 with additive white noise (1% intensity with respect to the maximum coupling strength) over the time horizon
t ∈ ½0,20�, where the frequencies of the oscillators ωi were randomly sampled over (0,5), the coupling strength of the functions Kij were randomly selected over
[0,12] (each colored dot represents the coupling strength αij of the time-varying coupling Kij), and the matrix AðiÞ in Eq. 3 is of the dimension 12,000× 6,001. (B)
The heat map of the coupling topology. (C) The accuracy of the estimated natural oscillation frequencies. (D) The accuracy of the estimated coupling strength.
In this estimation, ICON accurately recovered 95.1% of connections (26,561/27,930) with 93.1% accuracy rate on recovering the coupling strength in this
representative network.

9302 | www.pnas.org/cgi/doi/10.1073/pnas.1721286115 Wang et al.
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dynamics can be further analyzed by comparing the shape of the
averaged coupling functions between different SCN regions. Spe-
cifically, we found similar numbers and kinds of connections within
left and right SCN (Fig. 3 G and H), but weaker connections be-
tween than within the two SCN (Fig. 3 G–I). Coupling functions
within the bilateral dorsal SCN (Fig. 3 E and J) were more similar
to each other than to those in the bilateral ventral SCN (Fig. 3 F
and K), consistent with prior predictions based on anatomy and
physiology (33–36). We note that the averaged interaction func-
tions often have large cosine harmonics, which results in nearly
zero slope at zero phase difference. Such large nonisochronicity is
an important oscillatory property, which was computationally
predicted by a biomolecular model of the SCN (33) and supported
in Fig. 3 E and F.

Social Synchronization in Groups of Mice. Social synchronization of
animal and human activities is a central phenomenon that char-
acterizes the temporal order and structures in both social and
biological systems (14, 30, 37). We utilized ICON to reconstruct
the topology of social networks of groups of cohoused laboratory
mice, and to analyze and predict synchronization of their circadian
rhythms within each group. Using previously reported recordings
of body temperature of inbred female mice housed in groups of
five (38) (15-min resolution over 10 d before they were grouped,
68 d of cohabitation, and 7 d after separation), we convolved the
data (8,192 sample points) with the complex-valued Morlet con-
tinuous wavelet functions to measure period and amplitude over
time (39). Daily phases of the circadian peak were determined for
each mouse and then interpolated with a peak-finding approach.
The network estimations using ICON differed depending on

the synchronization behavior of the seven recorded quintets of
mice (Fig. 4 and SI Appendix, section 4). The recorded synchronization

behavior of each group of mice and predicted coordination of
the inferred network, i.e., the sync indices calculated based on
the experimental data (measured sync indices, red triangles in
Fig. 4) and the estimated phase data (estimated sync indices,
blue curves in Fig. 4), reliably and quantifiably identified mutual
entrainment in the same cohabitating groups as demonstrated by
the positive correlation between the sync index, σ, and the dom-
inant eigenvalue, λ2, of the Laplacian matrix of each of the seven
estimated networks. [A relationship between sync index and λ2
could be expected based on the Wu−Chua conjecture (40), which
was experimentally confirmed by electrochemical oscillators (29).]
Moreover, our results suggest that the synchrony of such social
networks was not induced by the distribution of the natural fre-
quencies of the mice (Fig. 4F), but by the interactions among mice
within each quintet (Fig. 4E).

Nonoscillatory Networks. The ICON technique is not restricted to
the inference of the topology of networks with oscillatory cou-
pling dynamics. Fig. 5 shows the estimation of a network with
nonperiodic coupling dynamics consisting of 60 nonlinear dy-
namical units. This synthetic network was created using Eq. 1,
with constant self-dynamics, f ðxiÞ=ωi, randomly sampled over
ð−π=2, π=2Þ, and the coupling functions Kijðxi, xjÞ, i, j= 1, . . . , 60,
randomly synthesized using the procedure presented in SI Ap-
pendix, section 2, where xiðtÞ∈R. The reconstructed network
(Fig. 5 A and B), using TSVD, showed excellent agreement with
the true network with precise recovery in both the natural os-
cillation frequency (Fig. 5C) and the coupling strength (Fig. 5D),
where Kij was approximated using a 2D Fourier series of 10 terms.
More analysis of the ICON estimation on multidimensional (n= 2)
nonoscillatory and larger networks (up to 30,000 agents) with
respect to different network properties (e.g., sparsity and noise

Fig. 3. ICON-derived intercellular communication in a circadian tissue. (A) Bioluminescence shows PER2 expression in over 500 SCN cells used for connectivity
estimation. TTX was washed out at day 0 to allow the cells to resynchronize their daily rhythms. (B) ICON identified hub cells (red dots) as 5% of the recorded
cells and localized throughout the SCN. The estimated total outgoing coupling strength for each cell revealed similar distributions of strongly coupled cells (14
and 16 hub cells, respectively) in the (C) left and (D) right SCN. The corresponding averaged coupling functions between cells were similar within (G) left and
(H) right SCN, but different between (I) left and right SCN, and (E and J) dorsal and (F and K) ventral SCN (error bars show SD).

Wang et al. PNAS | September 11, 2018 | vol. 115 | no. 37 | 9303
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intensity) is provided in SI Appendix (SI Appendix, section 2 for
numerical examples and SI Appendix, section 3 for robustness,
reliability, and efficiency of the ICON technique).

Discussion
In summary, we developed a unified data-driven methodology
for revealing the dynamic topology of complex networks and
demonstrated its validity for diverse scientific fields and scales by
analyzing networks of in silico circuits, artificial chemical oscil-
lators, cells in a tissue, and animals in a group. The robustness
and versatility of the ICON technique applied to these four

distinct systems suggests its broad applicability to determine net-
work topology and dynamics in diverse natural and engineered
systems. For example, prior efforts using mutual information (4)
or cross-correlated activity (41) estimated the direction or strength
of connectivity among cells in the SCN, but not the coupling
functions. Most recently, a theoretical framework for how SCN
cells might behave under different levels of coupling was used to
support the prediction that TTX weakens coupling in the SCN
(42). Here, ICON goes beyond categorizing coupling as either
undercritical or overcritical by providing testable predictions for
the direction, strength, and dynamics of all cell−cell interactions in

Fig. 4. ICON-derived social interactions that synchronized circadian rhythms of cohabitating mice. (A and C) The estimated network topologies for two
quintets of laboratory mice using ICON, based on the measurement of body temperature data (seven quintets, in total, listed in SI Appendix). (B) The es-
timated (blue curve) and measured (red triangle) sync index trajectories for the network in A, which is connected and synchronized over the cohabitation
period. (D) The estimated (blue curve) and measured (red triangle) sync index trajectories for the network in C, which is partially connected and not syn-
chronized over the cohabitation period. (E) The illustration of positive correlation between the sync index σ and the dominant eigenvalue λ2 of the Laplacian
matrix of each quintet network. (Inset) Results from the two experiments with λ2 near 0 and σ near 0.5 are expanded to illustrate their nearly overlapping
values. The Spearman correlation coefficient was 0.9727 (SI Appendix, section 4). (F) The illustration of noncorrelation between the natural frequency dis-
tribution and synchrony, which shows that synchrony is not induced by the similarity of the frequencies, where ωSD is the SD of the natural frequencies ωi,
i= 1, . . . , 7, of the seven quintets.

Fig. 5. Demonstration of inferring the connections, and their strengths, of a synthetic nonoscillatory network. (A) The graph representation of a synthetic
noisy random network of 60 nonoscillatory oscillators created using Eq. 2 with additive white noise (1% intensity with respect to the maximum coupling
strength) over the time horizon t ∈ [0,20], where the frequencies of the oscillators ωi were randomly sampled over ð−π=2, π=2Þ and the coupling strength of
the functions Kij were randomly selected over [0,15] (each colored dot represents the coupling strength αij of the time-varying coupling Kij). (B) The heat map
of the coupling topology. (C) The accuracy of the estimated natural oscillation frequencies. (D) The accuracy of the estimated coupling strength. In this
estimation, ICON accurately recovered 96.0% of connections (7,230/7,532) in this representative network.

9304 | www.pnas.org/cgi/doi/10.1073/pnas.1721286115 Wang et al.
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the SCN. The notion of the orthonormal basis representation in-
troduced in this paper enables the linear and parallel formu-
lation of the nonlinear topology estimation problem, which lays
the foundation for analyzing real-world complex networks of
tremendous size, such as brain, transportation, internet, power
grids, and social networks (14, 24). Importantly, the ICON
technique provides guidelines for the refinement of experimental
designs toward a comprehensive understanding of complex het-
erogeneous networks. We note that, in this work, we assumed that
the network dynamics are additive between the self-dynamics and
the coupling dynamics and within the coupling dynamics, and
considered the networks in the presence of white noise. Although
these are valid assumptions in many practical scenarios, future
studies should test ICON on networks that reorganize (e.g., add or
lose nodes or change coupling) or have multiplicative and colored
noise in their self-dynamics or coupling dynamics. Here, ICON
was used on networks where we have some prior knowledge of
the agent’s self-dynamics [i.e., the functional form of f ðxiÞ] and
with data recorded from nodes while the network relaxed from
desynchronized to synchronized states. These expectations also
need further evaluation. Ultimately, constructing reliable network
topology is the essential next step for the control of collective
behavior of networked systems, such as the design of entrainment
waveforms for asymptotic synchronization of a nonsynchronous

network, pinning controls for stabilization of an oscillatory net-
work, or desynchronization stimulus for suppression of unwanted
synchrony in brain networks.

Materials and Methods
See SI Appendix for detailed materials and methods. Detailed formulation
and implementation of the ICON technique can be found in SI Appendix,
sections 1 and 2. Especially, the detailed method for weakly coupled oscil-
latory networks is provided in SI Appendix, section 1. The robustness, re-
liability and efficiency of the ICON technique can be numerically validated by
numerous synthetic networks, and the results are included in SI Appendix,
section 3. The phase definition of the experimental data and the detailed
analysis of the mouse and SCN data are also provided in SI Appendix,
sections 2, 4, and 5, respectively. All SCN and mouse data came from
previous publications (4, 38).
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